Remediation of soil contaminated with the heavy metal (Cd2+).

نویسندگان

  • Chuen-Chang Lin
  • Hong-Long Lin
چکیده

Soil contamination by heavy metals is increasing. The biosorption process for removal of the heavy metal Cd(2+) from contaminated soil is chosen for this study due to its economy, commercial applications, and because it acts without destroying soil structure. The study is divided into four parts (1) soil leaching: the relationships between the soil leaching effect and agitation rates, solvent concentrations, ratios of soil to solvent, leaching time and pH were studied to identify their optimum conditions; (2) adsorption Cd(2+) tests of immobilized Saccharomycetes pombe beads: different weight percentages of chitosan and polyvinyl alcohol (PVAL) were added to alginate (10 wt.%) and then blended or cross-linked by epichlorohydrin (ECH) to increase their mechanical strength. Next, before blending or cross-linking, different weight percentages of S. pombe 806 or S. pombe ATCC 2476 were added to increase Cd(2+) adsorption. Thus, the optimum beads (blending or cross-linking, the percentages of chitosan, PVAL and S. pombe 806 or S. pombe ATCC 2476) and the optimum adsorption conditions (agitation rate, equilibrium adsorption time, and pH in the aqueous solution) were ascertained; (3) regeneration tests of the optimum beads: the optimum beads adsorbing Cd(2+) were regenerated by various concentrations of aqueous HCl solutions. The results indicate that the reuse of immobilized pombe beads was feasible; and (4) adsorption model/kinetic model/thermodynamic property: the equilibrium adsorption, kinetics, change in Gibbs free energy of adsorption of Cd(2+) on optimum beads were also investigated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reducing Agents Enhanced Electrokinetic Soil Remediation (EKSR) for Heavy Metal Contaminated Soil

Reducing agents-Enhanced electrokinetic Soil Remediation (EKSR) was performed for the removal of chromium (Cr), cobalt (Co) and nickel (Ni) from contaminated soil. The reducing agents oxalic acid and ascorbic acid were investigated under constant voltage gradient (2.0 V/cm), current changes, pH, redox potential, concentration changes and removal performance of Heavy Metals (HMs). The result...

متن کامل

Heavy Metal Contaminations at Two Iranian Copper Mining Areas and the Remediation by Indigenous Plants

Background: High concentrations of various heavy metals of mine tailings can easily contaminate the environment. Such materials need monitoring and remediation to prevent them from polluting the environment and food chain. Materials & Methods: The concentrations of certain metals were evaluated in the soil samples at Sorkheh and Mazraeh copper mining areas in northwestern Iran, using three r...

متن کامل

Fungi and bacteria as helping agents for remediation of a Pb - contaminated soil by Onopordum acanthium

Phytoremediation is a promising method for remediation of heavy metals (HMs) contaminated environments. However, the main failures are the limited bioavailabilty of HMs such as lead (Pb) in the soil and/or suppressed plant growth in contaminated sites. These limitations specifically occur in semi-arid zone environments such as calcareous soils. Arbuscular mycorrhizal fungi (AMF) and plant growt...

متن کامل

Assessment of Phytoremediation Potential of Alyssum Maritimum in Remediation of Lead-Contaminated Soils

Background and Aim: Phytoremediation is a promising method for improving soils that can easily absorb heavy metals, resulting in decontamination of the soil. The objective of this study was to assess the phytoremediation potential of Alyssum maritimum in the remediation of lead-contaminated soil. Materials and Methods: A randomized complete block design was used with five levels of lead (Pb) c...

متن کامل

Phytoremediation potential of heavy metals by two native pasture plants (Eucalyptus grandis and ailanthus altissima) assisted with AMF and fibrous minerals in contaminated mining regions

The current study assesses the effect of fibrous clay minerals’ amendments and arbuscular mycorrhiza incubation on heavy metal uptake and translocation in Eucalyptus grandis and Ailanthus altissima plants. For doing so, Eucalyptus and ailanthus trees have been grown in a soil sample, contaminated with heavy metal iron ore mining and collected from southern Iran. The area under study is arid, wi...

متن کامل

Phytoremediation potential of heavy metals by two native pasture plants (Eucalyptus grandis and ailanthus altissima) assisted with AMF and fibrous minerals in contaminated mining regions

The current study assesses the effect of fibrous clay minerals’ amendments and arbuscular mycorrhiza incubation on heavy metal uptake and translocation in Eucalyptus grandis and Ailanthus altissima plants. For doing so, Eucalyptus and ailanthus trees have been grown in a soil sample, contaminated with heavy metal iron ore mining and collected from southern Iran. The area under study is arid, wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of hazardous materials

دوره 134 1-3  شماره 

صفحات  -

تاریخ انتشار 2005